
SvPablo and the PERC Performance Tool Suite

Evan Welbourne, NERSC/LBNL
NUG Meeting, June 4th, 2002



Credit / References

Daniel A. Reed, Ruth A. Aydt, Luiz DeRose, Celso L. Mendes, Randy L. Ribler, Eric 
Shaffer, Huseyin Simitci, Jeffrey S. Vetter, Daniel R. Wells, Shannon Whitmore, and Ying 
Zhang, "Performance Analysis of Parallel Systems:  Approaches and Open Problems," 
Joint Symposium on Parallel Processing (JSPP), Nagoya, Japan, 
June 1998 (invited paper and keynote presentation), pp, 239-256. 

PERC consortium, The Original Proposal for the PERC Project.
Proposal in response to the DOE SciDAC Solicitation 01-07,
Mar. 9, 2001

PERC consortium, The Performance Evaluation Research Center (PERC).
slides from the poster session at the SciDAC PI meeting,
Jan. 15-16, 2002

PERC consortium, personal contact

Slides 13-38 adapted from:

Celso Mendes, Ying Zhang, Dan Reed, 
SvPablo: A Toolkit for Performance Analysis of Parallel Systems.
slides from tutorial given at the PERC SciDAC meeting during SC2001,
Nov. 2002



The Changing face of
High Performance Computing

As the science and technology of high performance computing 
advances, our applications and the environment in which they execute is 
constantly evolving.

• Larger systems:  HPC systems are scaling to a larger and larger
numbers of processors.

• Complex codes:  Codes are often multi-language, and written using
object-oriented, and data-parallel programming languages.

• Diverse environment:  With the advent of the computational grid, our
codes will no longer execute on homogeneous systems, but on a large
heterogeneous system.

?Application performance is a complex function of many variables; it’s
often counter-intuitive, and probably not predictable using first-
principles.  Our performance tools are not suited for the future of HPC.



Requirements for the Success of a 
Modern Performance Toolkit

To succeed in the rapidly evolving world of HPC, a performance toolkit 
should be:

?Scalable: Tools should scale for use on large systems.

?Portable: Tools should work on every system in the grid.

?Compatible: Tools should be work with most programming languages.

?Versatile: Tools should leverage a variety of HW and SW techniques.

?Experimental: Since analysis from first-principles is unlikely.

As always, we would like our performance tools to be:

?Easy to use:  Simple and intuitive for users.

?Non-intrusive: Disruption of the normal execution and usage pattern for
an application should be minimal.

?The PERC project aims to develop a toolkit with these qualities.



The PERC SciDAC Project

The Performance Evaluation Research Center (PERC) 
is an “Integrated Software Infrastructure Center” (ISIC) 
sponsored under DoE’s SciDAC program.

• Funding: approx. $2.4 million per year.

• Mission:  
Develop a science of performance.
Engineer tools for performance analysis and optimization

• Focus:
Large, grand-challenge calculations, especially SciDAC application 
projects.

PERC website:  http://perc.nersc.gov



PERC Participants

PERC is a collaboration among eight institutions: four DoE laboratories, 
and four Universities.

The PERC project is led by David H. Bailey at NERSC/LBNL.

PERC’s tool development effort is led by Dan Reed at UIUC.

San Diego Supercomputing Center
Allan Snavely

Oak Ridge National Lab
Pat Worley
Tom Dunigan

University of Maryland at College Park
Jeff Hollingsworth

Lawrence Livermore National Lab
Dan Quinlan
Bronis de Supinski
Jeffery Vetter

University of Illinois at Urbana-Champaign
Dan Reed

Argonne National Lab
Paul Hovland
Boyana Norris

University of Tennessee
Jack Dongarra

Lawrence Berkeley National Lab
David Bailey
Erich Strohmaier



The PERC Performance Tool Suite

The goal of PERC’s tool effort is to produce an interoperable suite of 
measurement, analysis, and tuning tools that are suited for use on current 
and future HPC systems.

This goal requires three tightly coupled research efforts:

• End-user tools that integrate various analysis and measurement
approaches, providing a common interface for comparing performance
measurements across platforms and executions and correlating this
data with benchmark and application source code.

• Flexible instrumentation systems for capturing hardware and software
interactions, instruction execution frequencies, memory reference
behavior, and execution overheads.

• Data management infrastructure for tracking performance experiments
and data across time and space.



PAPI – Performance API

An API for portable hardware measurement

Provides the tool designer with a consistent interface and
methodology for use of the performance counter hardware
found in most major microprocessors.

PAPI is available for Linux/x86, Windows 2000, Linux/IA-64, Sun 
Solaris/Ultra 2.8, IBM AIX/Power, SGI IRIX/MIPS, Compaq Tru64/Alpha 
Ev6 & Ev67, and Cray T3E/Unicos.

To use PAPI on Seaborg, issue the command:

% module load papi

For more information on PAPI at NERSC, see the NERSC help page:
http://hpcf.nersc.gov/software/tools/papi.html
PAPI project homepage: http://icl.cs.utk.edu/projects/papi/



Dyninst API

An API for dynamic instrumentation at 
runtime.

Provides a machine independent interface
to permit the creation of tools that use runtime 
code patching.

The interface is analogous to a machine independent intermediate 
representation of instrumentation as an abstract syntax tree. 

The Dyninst API is available for MIPS (IRIX), Power/PowerPC (AIX), 
SPARC (Solaris), and x86 (Linux, Solaris and NT).

Dyninst project homepage: http://www.dyninst.org



Performance Bounds

A set of tools for establishing bounds on the performance of an 
application or program construct.

Will use source code analysis to determine what sections of code are 
memory bandwidth limited, instruction scheduling limited, etc. on a given 
architecture.

The tools will also utilize optional user annotations in order to provide 
more accurate bounds for performance-critical sections of code



Sigma

A tool for memory hierarchy measurement.

Uses runtime instrumentation to extract a detailed representation of the 
memory reference pattern of an application.

The memory reference pattern information will be the input to a 
collection of post-execution tools that provide insight into memory 
performance issues such as cache conflicts and memory bandwidth 
contention.

The Sigma effort is a joint collaboration between IBM and the University 
of Maryland.



SvPablo

An end-user tool that supports source instrumentation 
and browsing of runtime performance data with a
graphical user interface.

Incorporates the APIs and other performance tools to provide a
front-end to the PERC tool suite.

SvPablo is available for: SunOS 5.7, SGI Irix 6.5,
IBM SP2 AIX 4.3, RedHat Linux 6.1, 6.2, 7.1, Intel 
Itanium IA-64/RedHat 7.1, and Compaq Alpha 
OSF1 5.1 

Supports C, Fortran-77, Fortran-90
(free and fixed form), HPF, and MPI

SvPablo project homepage: 
http://www-pablo.cs.uiuc.edu/Software/SvPablo/svPablo.htm



SvPablo Components

Instrumented
source code

Compiler

SvPablo
data capture

library

Performance
file

Per-task
performance

files
Execution on

parallel
architecture

Virtue time
tunnel display

AP sensor
data 

collector
Source Code

Instrumentation

Linker

Performance data
visualization

SvPabloCombine

Instrumented
executable

Instrumented 
object code

S
ou

rc
e 

C
od

e

GUI P
A

P
I L

ib

A
ut

op
ilo

t
Li

b



SvPablo Model

. . .

. . .



Using SvPablo at NERSC

SvPablo v5.1 is installed on NERSC’s Seaborg machine.

To use SvPablo on Seaborg, issue the command:

% module load svpablo

SvPablo’s main window can then be launched with the command:

% runSvPablo &

The SvPabloCombine command may be issued on the command line 
as well:

% SvPabloCombine  <parameters>



The SvPablo Main Window



Project Menu



New Project Dialog Box



Performance Context Dialog Box



Interactive 
Instrumentation and Analysis

Typically done in three steps:

1. source code instrumentation
2. program compilation and execution
3. performance data visualization

Each cycle (1-2-3) corresponds to a Performance-Context

If desired, the cycle can be repeated (multiple performance-contexts)

Steps 1 and 3 are done in the GUI



Step 1: Source Code Instrumentation

Instrumented
source code

Compiler

SvPablo
data capture

library

Performance
file

Per-task
performance

files

Execution on
parallel

architecture

Virtue time
tunnel display

AP sensor
data 

collector
Source Code

Instrumentation

Linker

Performance data
visualization

SvPabloCombine

Instrumented
executable

Instrumented 
object code

S
ou

rc
e 

C
od

e

GUI P
A

P
I L

ib

A
ut

op
ilo

t
Li

b



Source Code Instrumentation

• Instrumentable constructs:
?procedure calls
?outer loops

• Basic metrics:
? counts 
? inclusive durations
?exclusive durations

• Optional metrics:
?any metric provided by PAPI



Interactive Instrumentation

instrumentable
constructs

( function calls
and outer loops )



Line by Line Instrumentation

Instrumentable lines

Instrumented lines



Line Instrumentation – Multiple Events



Line Instrumentation – Multiple Events



Automatic Instrumentation



Step 2: Program Compilation and 
Execution

Instrumented
source code

Compiler

SvPablo
data capture

library

Performance
file

Per-task
performance

files

Execution on
parallel

architecture

Virtue time
tunnel display

AP sensor
data 

collector
Source Code

Instrumentation

Linker

Performance data
visualization

SvPabloCombine

Instrumented
executable

Instrumented 
object code

S
ou

rc
e 

C
od

e

GUI P
A

P
I L

ib

A
ut

op
ilo

t
Li

b



Changes from Non-Instrumented Case

• Adjust application’s Makefile(s)
- Replace source code filenames

e.g. prog.c ? prog.Context.inst.c
- Compile InstrumentationInit.c and link with it
- Must always instrument main program
- Link with $(SVPABLO) and $(PAPI)

• Execute instrumented executable

• Combine per-task performance files:

% SvPabloCombine –o PerfFile c_SDDF*.asc



Interface to PAPI Hardware 
Performance Counters

• User-configured file is read at runtime
- desired PAPI counters are specified in file
- if file unavailable, default counter set is used
- SvPabloLibrary versions: with or without PAPI
- synthesized metrics: e.g. MFLOPS, % branches mispredicted

• 8 hardware counters are available on Seaborg, to see the available HW 
events, issue the command:

% /usr/common/usg/papi/2.1/src/tests/avail

See the SvPablo user’s guide for details:
ftp://www-pablo.cs.uiuc.edu/pub/Pablo.Release.5/Documentation/SvPabloGuide.ps.gz



Step 3: Performance Data Visualization

Instrumented
source code

Compiler

SvPablo
data capture

library

Performance
file

Per-task
performance

files
Execution on

parallel
architecture

Virtue time
tunnel display

AP sensor
data 

collector
Source Code

Instrumentation

Linker

Performance data
visualization

SvPabloCombine

Instrumented
executable

Instrumented 
object code

S
ou

rc
e 

C
od

e

GUI P
A

P
I L

ib

A
ut

op
ilo

t
Li

b



Performance Data Visualization

• Color encoded GUI
- configurable by the user
- no change required to display PAPI data

• Aggregate displays
- mean and standard deviation values across processors
- maximum value and its processor number
- minimum value and its processor number

• Detailed displays
- individual metric values per processor



Performance Visualization

count,
exclusive 
duration



Function Visualization

selected
function



Performance Metric Selection



Source Code Visualization

metrics



Multiple Events Metric Box

mark for multiple
events



Performance Statistics



The Roadmap for the PERC Tool Suite

Currently:
• Tools are being ported to more HPC platforms.
• Additional functionality is being added to the tools.
• Application groups are using the tools and providing feedback.

Future: 
• Port tools to all major HPC platforms.
• Improve functionality with the help of feedback from application groups.
• Enhance the functionality of the tools and work on interoperation.
• Integrate performance models with the tools.

? The HPC community will be presented with a robust, versatile, and
portable suite of performance tools that is suited to a modern HPC
environment.



The Roadmap for the PERC Tool Suite

Performance Bounds

• Build on infrastructure for
C/C++ and Fortran-77 source
code

• Automate the application of
performance bounding   
techniques

Sigma++

• Predict Performance using
trace data

• Compile-time instrumentation 
for collection of data-
dependence information

Dyninst

• Implement full functionality on
all platforms

• Build infrastructure for use with
parallel applications

PAPI

• Multi-way multiplexing
• Faster substrates



The Roadmap for the PERC Tool Suite

SvPablo

• Improve infrastructure for supporting Fortran-90 codes

• Develop an infrastructure for supporting C++ codes

• Add support for OpenMP

Interoperate with the other tools and instrumentation systems:

Dyninst: Use the Dyninst API to allow dynamic instrumentation and
analysis at runtime

Performance Bounding: Use to display performance bounds alongside
measured performance

Sigma: Enable Sigma instrumentation and visualization of Sigma results


